
UML Xtra-Light

How to Specify Your

Software Requirements

Milan Kratochvíl Barry McGibbon

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011–4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Milan Kratochvíl and Barry McGibbon 2002

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

Any product mentioned in this book may be a trademark of its company.

UMLTM is a registered trademark of the Object Management Group.

UML logo used with permission from the Object Management Group.

First published 2002

Printed in the United States of America

Typeface Stone Serif 10.5/13 pt., Stone Sans and Informal System QuarkXPress® [GH]

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Kratochvíl, Milan.
UML xtra-light : how to specify your software requirements / Milan Kratochvíl,

Barry McGibbon.
p. cm.

Includes bibliographical references and index.
ISBN 0-521-89242-2
1. Application software – Development. 2. UML (Computer science) I. McGibbon,

Barry, 1947– II. Title.
QA76.76.A65 K72 2002
005.1 – dc21

200219253
ISBN 0 521 89242 2 paperback

Contents

Foreword ix

Preface xi

Acknowledgments xiii

About the Authors xv

How to Customize This Book xvii

Chapter 1 • Introduction 1

Software – Yet Another Knowledge Industry 1
Classifying the Knowledge Industry 2
Consequences of the Knowledge Industry 3
Sharing the Knowledge 5
Sharing the Responsibility for Getting It Right 6
Methods and Processes 8
Summary 11

Chapter 2 • Aligning to the Business 13

Using UML Activity Diagrams 15
Using Business Use-Case Diagrams 23
But What About the Data? 25
Summary 26

3

Chapter 3 • Adding Rigor to the Requirements 27

Use Cases 27
Use-Case Example 29
Meeting the Devil 34
Use-Case Analysis at Two Levels, At Least 36
How to Avoid Messing Up Use Cases 39
Summary 46

Chapter 4 • Sketching the Inside Structure 47

Class Diagrams 48
The Class Diagram 50
Understanding Class Relationships 52
Summary 59

Chapter 5 • Sketching the Inside Dynamics 61

State Diagrams 61
Tying It All Together 67
UML Collaboration Diagrams 70
Other UML Diagrams 70
Summary 71

Chapter 6 • Moving Toward Components 73

Components Communicate with Everyone 76
Impact of the Component-Based Approach 79
Reusing Components 81
Building a Component Library 83
Sharing Components in Your Organization 84
Avoiding the Traps 85
Automating the Bid Process 87
Summary 88

Chapter 7 • Mapping from Classes to Data Models 89

Use Appropriate Diagrams and Standards 90
Mapping Relationships 91
Summary 95

Chapter 8 • Concluding Remarks 97

Think Big, Start Small, and Sustain the Effort 97
UML Under Time Constraints 98

Some Suggested Readings 101

Index 103

4 Contents

Chapter 1

Introduction

Software – Yet Another Knowledge Industry
Knowledge industries such as electronics, space, pharmaceuticals, or soft-
ware are special. On the surface, they’re the hotly-argued-upon backbone of
the new economy, a concept that’s no longer new. In our opinion, it’s the
approach to business that makes the difference, rather than a company’s
niche or age. Some old-economy veterans, such as global-automation ven-
dor ABB, have rapidly expanded their R&D initiatives and resources,
employing many more IT specialists than many so-called new high-profile
IT firms. IT provides a foundation to a variety of current business ideas,
including customer-driven manufacturing where a web customer configures
the product or even the software guiding an industrial robot in manufactur-
ing the chosen customized product.

Obviously, knowledge industries are more special under the shell than at
this slightly superficial mass-media/thematic level. On one hand, they have
business processes similar to other industries but, on the other hand, pro-
duction/operations is a small part of any business dominated by R&D and
by marketing the know-how of that organization.

1

Awareness of knowledge-industry specifics is a project-time saver, both
within the software industry itself and with the rapidly increasing number
of its customers in the other knowledge industries. Knowledge industries are
often interleaved with traditional industry sectors – today, you find com-
puter chips and software in all the flagships of industrialism, from heavy
trucks to railways. But, in a high-tech region, the complete knowledge-busi-
ness value chain can sometimes grow remarkably long without any tangible
(“hard”) products whatsoever (Figure 1-1). For example, your customer
might be a training company, whose customer is someone selling tools and
methodology to a software house, some of whose customers provide Inter-
net banking to e-traders, others providing sales configurators for customized
insurance packages, and on it goes; sometimes, all the tangible hardware
might seem to be produced on some other planet. Nevertheless, whichever
the surrounding corporate culture or age of the enterprise, its IT parts must
be considered a knowledge industry.

Classifying the Knowledge Industry
Figure 1-2 shows a kind of classification, pioneered 15 years ago by Karl-Erik
Sveiby’s team,1 which makes us aware of the climate in our firm or project
by starting from the extremes:

• A traditional office: a lack of real organization, of explicit common
objectives, of know-how. Professor Parkinson’s Laws apply. For
example, an office of more than 150 employees doesn’t need any
external input because of generating its workload itself!

• A traditional factory: traditionally a hierarchy. Even in a modern fac-
tory, there’s more focus on processes, work instructions/procedure

2 UML Xtra-Light

Figure 1-1 A possible knowledge industry value chain.

Training
Company

System
Integrator

Software
Component

Supplier

Banking
Service
Provider

Customer

1 Visit this Swedish-Australian writer and pioneer of knowledge management at
www.sveiby.com.au. Books include Managing Knowhow, by Sveiby and Lloyd (Bloomsbury,
London, 1997) and The New Organizational Wealth, by Sveiby (Berrett-Koehler, San Fran-
cisco, 1997).

steps than on creativity. In the past, the personnel were roughly
supposed to take their hands with them in the morning – leaving
their heads at home.

• An agency: creativity in an organizational chaos. Everyone is working
hard and loves it – forgetting about surroundings, lunches, and col-
leagues. Anyone who becomes a burnout is considered an admirable
role model.

• A knowledge enterprise: expertise combined with a common vision,
structure, and cooperation. A knowledge enterprise solves complex
problems of customers, while a service enterprise solves simple
problems with appropriate repeatable procedures.

As you can see, no organization fits into any of the previous cartoons.
The engine of the global economy is a gray zone that we prefer calling the
knowledge industry: firms or projects that package their know-how into
well-defined products and procedures, yet stay knowledge-intensive. Here,
component-based approaches boosted by standards are the engine in most
improvement efforts.

Consequences of the Knowledge Industry
Know-how intensity has some important practical consequences.

The production process becomes a packaging machine for the realization of
the know-how, for example, the pharmaceutical factory for the know-how
of R&D specialists. It must not fail, so all bottlenecks are banned, but these

Chapter 1 • Introduction 3

Figure 1-2 Where is your corporate culture?

Factory Knowledge Enterprise

Knowledge Industry

Office Agency

low high

Type
of

Organization

Know-how Intensity
(Knowledge Content in the Business)

production costs are pennies compared to the acquisition and development
of this know-how.

The silicon chip, the medical pill, the software CD, or the download-site is a
wrapper for the know-how. We don’t buy pills by weight. We pay for the
expected improvement instead, no matter how it’s packaged. Similarly, buying
software by kilo-lines, (kLocs) of code doesn’t make much sense. We pay for the
expected business improvement, no matter the amount of new code or reused
components. As the Object Management Group (OMG) points out, modern
software projects avoid writing all the code for the programs. In other words,
they reuse more infrastructure parts, off-the-shelf software components/busi-
ness-oriented components than traditional projects do. In knowledge industries
know-how is the real thing, whereas the wrapper is hardly relevant.

Unlike traditional mass production, the competitive edge isn’t in the
workflows of production/operations/administration, but in the mechanisms
of sharing and processing know-how across the firm. Therefore, a traditional
mechanical Business Process Reengineering (BPR) approach tends to solve
the wrong problem when applied in a knowledge industry because it’s focus-
ing on the basic activities, without considering the complexity of the busi-
ness logic in that activity.

The Asset Paradox

When the main asset of the firm is knowledge, then the trick is to stay fairly
independent of individuals by turning a knowledge enterprise into a knowl-
edge industry. This requires storing more knowledge in a format accessible to
as many co-workers as possible, most often using computers. The labor mar-
ket is simply a market. Therefore, even in a rather holistic bookkeeping
approach, the (fancy) knowledge-asset figures must be adjusted by a factor
reflecting their infrastructure, structuring, standardization, methodology,
component-sharing, and so forth.

Acquiring and keeping unique knowledge is key in a clear-cut knowledge
enterprise, whereas in a knowledge industry, the structure of the know-how –
and the infrastructure used in keeping it current and in feeding it through –
is as important as the know-how itself, a fact deserving attention from both
knowledge managers and financial analysts.2 Typically, a knowledge enter-

4 UML Xtra-Light

2 Estimating/forecasting high-tech shares has been hotly argued since the 1980s. Focusing
on knowledge structure and infrastructure is less fuzzy than trying to quantify pure knowl-
edge. We hope to see less roller-coaster rides on NASDAQ in the future, as tech shares
become less volatile when all such factors are thoroughly worked through and taken into
account by analysts, ahead of IPOs or mergers. As we show in Chapter 6, configurable
components can boost sales activities as well, by enabling a closer and cheaper match
between bids and specific customer needs in a variety of niches.

prise sells knowledge, whereas a knowledge industry sells its capability to
apply and deploy its knowledge packaged as, for example, software.

Sharing the Knowledge
Given all these specifics, the efficiency of specification and development
activities is extremely important in any knowledge industry. The toolkit of
improvement is all about knowledge sharing by:

• Standardizing the terms and the notation

• Practicing a common approach

• Sharing pretested components

UML has standardized the terms and the notation by providing a set of dia-
grams with a defined syntax. Unlike other knowledge industries, software
can’t be expressed by drawings or photographs of some spatial/physical,
musical, biological, or chemical properties. Even under a fancy microscope,
software stays invisible and intangible. A software-blueprint isn’t as intuitive
as a land map showing ice in white and water in blue. Rather, it presupposes
a general industry-wide agreement in the first place, on the agreed meaning
of every single symbol or relationship.

This makes us extremely dependent on a standard notation for any soft-
ware-related communication and specification, all the way from a project
developing a system from scratch to one selecting an off-the-shelf package.
As development projects become increasingly global, UML also helps those
of us communicating in our second or third language. For example, IBM
development labs are located in dozens of countries, each with its own
native language or languages, or the new Airbus Superjumbo involves indus-
tries from most of Europe. Atop of that, all natural languages include some
natural ambiguity.3 All things considered, word processors aren’t enough as
a tool of specifying requirements.

Practicing a common approach or method framework across projects, sup-
ported by a regularly upgraded knowledge aid, such as online mentors,
built-in hyperbooks, or intelligent checks in a PC-based tool (a UML case
tool), is knowledge sharing in a narrow sense. With cheap tools, we simply
access the expert knowledge of others (typically, using standard search
engines and hyperlinks) whereas, with automation tools, we can even run it

Chapter 1 • Introduction 5

3 A fact easily “rediscovered” while we’re writing this book and asking others to read our
first-draft text.

on a computer, and then simply access the results of the run (or let the com-
puter use them), be it calculations or a more qualitative business logic.

We share pretested components across the firm and across the software
industry. This kind of “canned know-how” from colleagues is a superior
stage of knowledge sharing – we can activate the result right away, without
ever acquiring the know-how that created it. This component that encapsu-
lates the expert’s knowledge and experience is kept up-to-date by the expert,
leaving all the other developers free to concentrate on the business solution.
This is an effective technique and a rather down-to-earth one when con-
trasted to preaching knowledge management at a thematic level. As we
point out in the Chapter 6, this degree of automation can be increased fur-
ther by smart configurator tools in the near future.

By and large, we encourage IT teams to exchange and adopt best practices
from other sectors of industry. That said, we recommend knowledge industries
as sources of ideas: many Business Process Reengineering cases and books
described processes with a low-to-medium knowledge content, hardly applica-
ble in the context of software specification and development. Although the
bottom line might look deceptively similar, the devices and the activities gen-
erating that bottom line do differ, and those differences may be significant.

Sharing the Responsibility for Getting It Right
Even the buyer, the reengineer, or the process owner is involved in specify-
ing and improving requirements throughout the project. In any knowledge
industry, the customer and the vendor share this responsibility. Here, “the
customer is always right” translates into “the customer always has the right
to get the right solution to the right problem.” If you go to your car dealer and
order a thirsty six-wheel-drive monster for driving from home to a job just
around the corner, your dealer might laugh, as Figure 1-3 shows, but he
offers and sells the monster to you anyway. On the other hand, if you try

6 UML Xtra-Light

Figure 1-3. Some simple old approaches to customer requirements don’t count in a
knowledge industry because a shared responsibility exists for the specification and its fit-for-
purpose.

something similar in a knowledge industry, a serious vendor will raise strong
objections on the mismatch between the business and your requirements
because of this shared responsibility.

Sharing responsibility across the negotiation table involves communica-
tion at a pretechnical high level, as does sharing know-how within a team.
Having combined rigor with easy-to-learn diagrams, UML has proven to be
an excellent common IT language. UML is an unrivaled smorgasbord4 of
diagram ingredients matching a variety of needs. In business modeling, the
stakeholder or the buyer works closely with the project team, gradually
transferring work to the IT staff members as we move on (iterate) through
the full system-development cycle.

A standard notation (or modeling language) greatly reduces ambiguity
throughout the project.5 This is important because ambiguity is a major
source of confusion. You say the same thing, which is understood/reacted to
in different ways by the listeners. For example, the clear statement “secure
the building” will cause the Marines to form a taskforce and storm the
building, a legal department to negotiate a long lease on the property, and
the security experts to install and manage an access control system.

A good analogy exists on being multilingual. Milan speaks Swedish in
Stockholm or Czech in Prague, just as you’re fluent in your business lan-
guage, be it in reinsurance, meteorology, switching, billing, or train control.
Methodology experts or developers of a UML-tool understand UML at this
level of detail, that is, all the diagrams’ types, syntax, and rules. Milan can
also speak a “standard language” – English – in frequent areas such as soft-
ware, but not in areas like bug species (except software bugs of course).

Most software developers understand UML at this standard level.6 UML
resembles a grammatical language, such as Spanish or German, because of
its predefined syntax and semantics. Nevertheless, we approach it in quite
an idiomatic, example-based manner as common with today’s English. With

Chapter 1 • Introduction 7

4 Usually translated as “Swedish table,” a large table of ready-made dishes located in the
middle of a restaurant, where the guests choose and pick their preferred combinations and
quantities themselves, and then eat at their restaurant-tables.
5 Language and reasoning are closely interrelated. As UML pioneer Dr. Ivar Jacobson
points out, IT people used to think as humans until attending computer science classes at
the university level, where they learn to think as computers (i.e., sequential Von Neumann
machines splitting the world into data values and procedural instructions, which are
poorly, or hardly, interrelated). UML provides the language necessary for reinventing the
natural, human way of reasoning in the context of software systems. You can view it as a
set of well-defined, preshrunk, standard mind maps that are useful to both the project
team members and the software development tools to be used in the project.
6 Typically, they also provide UML guidance to others throughout a project. The IIIE’s list
of software requirement qualities implies a cooperation here, stating that requirements
shall be unambiguous, complete, correct, consistent, traceable, modifiable, understandable,
verifiable, and ranked for importance and stability.

this language metaphor in mind, we found several good Webster’s dictionar-
ies are around for UML (addressing the “native”), as well as an extensive
English course book or three (addressing the ambitious “guest scientist from
abroad”).

The missing link so far was a tour book on the language, accessible to
many “frequent visitors” in the landscape of software projects. This tour
book needs to fit in a lightweight cabin bag and be reasonably comprehensi-
ble, even during jet lags. From our customers, the pressure was on as well –
so we wrote one.

Overconsumption of languages is excellent for brains, overconsumption
of standard notations is far from excellent for a project approaching delivery
deadline. With the smorgasbord principle in mind, let’s pick up what we
want and skip the cookies. If you’re a software specialist, you’ll soon read
deeper books anyway.

Methods and Processes
UML standardizes the system documentation independent of how you pro-
duce it. Methodologies, on the other hand, are paths to take you from the
problem to the solution and, during that journey, deliver the relevant UML
diagrams.

UML provides diagram notations for most kinds of applications, so it
works with all up-to-date methodologies, that is, with a component-based
approach. Nevertheless, various practical methodologies are based on vari-
ous ambitions and priorities. Some organize the overall problem-solving
activities within a project – the cookbook approach – whereas others pro-
vide more how-to and the ingredients for the problem solver – the toolkit
approach. Likely, this scale looks familiar to most readers who are specialists
in non-IT areas. Of course, you can combine both ends of the scale in the
same project: the UML notation works fine. Let’s briefly compare three
approaches in the following:

The Rational Unified Process™ (RUP)7 makes the development process in
a software project visible, from inception to deployment. Stressing, step by
step, roles (30 kinds of “workers”) and responsibilities for 60+ predefined

8 UML Xtra-Light

RUP SFSelect Perspective

Specialist’s path:
Predeveloped
components

Generalist’s path:
Development
process

7 from The Rational Corporation; visit www.rational.com.

Chapter 1 • Introduction 9

B A S I C S TA N D A R D I Z AT I O N A N D C R E AT I V I T Y
B O O S T E A C H O T H E R !

The recent standardization effort put into UML resembles trends from knowledge
industries of the past. For centuries, classical music has been pushing its ubiquitous
mix of science and creativity on a global market. We also find standard constructs in
the American tradition, from a 12-bar blues to a jazz standard tune. Interestingly, when
scaling-up sheer creativity into a knowledge industry, people always try to standardize
the basics, to enable a shift of focus from low-level work to the big picture, that is, to
what we do with the basics.

Unsophisticated music is as old as humanity itself. However, the “Big Art” music of
the Western world emerged from extensive standardization only a couple of centuries
ago. Before J. S. Bach, most churches used their own proprietary scales, some of which
were impossible to play on instruments. Also, a tone could be pitched differently in dif-
ferent scales; thus, the same tone was played on different keys of the same keyboard.
In cooperation with keyboard vendors, Bach pioneered standard tempered scales (major
and minor, with standard tone intervals), enabling a leap in composer work and in
interplay of instruments. A century later (W. A. Mozart and the classical period in
music), common architectural templates already existed, such as a concerto in three
movements (the slow one in the middle) or a symphony in four movements (the two
slow ones in the middle, the latter of them a minuet.*) Similar architectural rules also
governed the structure within each movement. A de-facto standard guided staging
appropriate numbers of appropriate instruments in an orchestra, which gave the com-
poser the necessary hints upfront in “design time,” while composing the music –
regarding the hardware to deploy the music later, onstage. As musicians were always
borrowing-extending-reusing jerks and themes invented by someone else, even what
we now call a component approach became frequent in the beginning of the classical
period. For example, in large divertimentos, an evening or event was configured from
a small “library” of ready-made components (movements). This greatly simplified and
streamlined the requirement specification, yet matched the preferences of that particu-
lar evening’s sponsor.

The long-term focus on Mozart in most creative professions** creates a major
obstacle for a minority of programmers still trying to claim “no standards and no com-
ponents, please – this is creativity.” Long-term experience from other knowledge
industries indicates exactly the opposite: extremely creative individuals benefit from
architectural standards and components.

* To be exact, Mozart’s Prague Symphony is the widely known exception to this rule because it omits
the minuet movement (according to the BBC’s “Best on Record,” some 80+ recordings of the sym-
phony exist worldwide).

** Many readers might remember Milos Forman’s film Amadeus or Ingmar Bergman’s Magic Flute, or
several BBC documentary films on Mozart’s music (among others). The creativity dimension was
recently explored by Don Campbell in his book The Mozart Effect (Avon Books, 1997) and his CD-pro-
duction, Music for Creativity and Imagination (Spring Hill Music®, 1997). In arguing that history repeats
itself, we’ve also checked facts with Jiří Kratochvíl (Milan’s father), a woodwind history expert at the
Prague Academy of Music (see Pamela Weston: Clarinet Virtuosi of Today, Egon Publishers Ltd, 1989).

kinds of artifacts, RUP is a process framework suited for large projects,
roughly of 70 members or more, with a large number of components to be
constructed. RUP also outlines splitting the project into use-case-based (see
Chapter 3) miniprojects, some running in sequence and some in parallel, in
several iterations. Because RUP is distinctly use-case driven, some strengths
and limitations of use cases affect the process itself. For example, a data ware-
house/data mining or knowledge-based system implies hard work inside the
system, despite rather simple external interaction, whereas use cases are easy
to apply to telecom switching or to order handling, where a much larger pro-
portion of external interaction (often with end users) takes place.

To a potential user of the process, we strongly recommend acquiring a
thorough knowledge of UML to ensure the right aspects are dealt with in
the right documents (artifacts). Providing guidelines from the requirement
specification all the way to test, the process has become rather heavyweight,
which implies some extensive process customization to start with to make
the process fit the purpose. This customization needs to be done in two
steps: first, for the enterprise, and second, for the project. In some 4,000+
web pages, this process framework defines roles, artifacts, work flows/activi-
ties, and project management.

IBM’s WebSphere® Business Components,8 an application framework
previously known as the SF (for San Francisco or Shared Frameworks) is, on
the other hand, a wholly component-driven approach. IBM supplies off-the-
shelf, pretested components, books, best practices, and instruction to solu-
tion suppliers who target customers requiring e-business, CRM, and ERP
packages. Thus, SF is a component framework for application projects – large
or small ones – typically employing more reused pretested components than
new ones. SF motivates the doers rather directly: here we have a box of soft-
ware Lego bricks and the directions for use, so let’s go ahead.

SF’s strengths and limitations are typical of a specialist’s method. Such
methods are precustomized for certain systems – in SF’s case, the closer to
ERP/CRM/e-business, the more useful it is. We hope similar complete frame-
works will also emerge in some other niches. By shrinking development
timescales, SF guides projects into smooth construction work: more assem-
bly, less programming. As senior developers at Swedish ERP-vendor IBS9 as
well as their R&D Manager and Vice President Tomas Bräne points out, hav-
ing found a couple of appropriate SF components, a day might sometimes
be enough to develop a sophisticated “new” one.

10 UML Xtra-Light

8 from the IBM Corporation; visit www.ibm.com/software.
9 At the end of 2001, IBS is ranked third in the world by AMR Research, and Frost & Sulli-
van in the field of supply chain management (visit www.ibs.se).

Aonix’s Select Perspective™10 is a balanced component-based approach in
the middle of the previous scale. It fits medium and large projects using a
medium-to-large proportion of pretested, internally developed (and owned)
components. Along with that, Aonix suggests employing IBM’s SF compo-
nents off-the-shelf, whenever appropriate. Guidance is delivered by books,
instruction, and an interactive manual (Process Mentor) integrated in Per-
spective’s UML-toolkit, the Select Component Factory. An object repository
is used to keep track of, cross-reference, and manage both project docu-
ments and common enterprise ones (cross-project), large or small. For exam-
ple, if phone-no is used in 20 components and we have to add three digits
to it for country codes, we alter only once. A practical interplay of compo-
nent management and application development is stressed throughout.
Select Perspective’s range is wider than SF’s and narrower than RUP’s: enter-
prise systems in finance, government, administration, airlines. Select Per-
spective shrinks the development process, aligns requirements to business
processes, and enables more assembly from components with less program-
ming and with improved delivery times.

As you can see, people use UML in a variety of approaches. An enterprise
can easily put together a customized approach, based on one or more com-
mon process-frameworks. The OMG is currently coordinating the develop-
ment of a Software Process Engineering standard (SPE) with the longer-term
objective of providing interoperability across tools and formats (repositories)
in the software process-engineering field.11

Whichever your firm’s variant, make sure both systematic component man-
agement and continuous component development processes are alive and well.
They deserve the same priority as in other sectors of industry because future
reduction in costs and lead time, with improved quality and flexibility, justi-
fies this initial investment. Therefore, we stress the component approach
throughout this book and focus on components in the final chapters.

Summary
Knowledge industry, including software, is special in many ways. The
responsibility for a good specification is shared across the negotiation table,
thus creating a need for high-level, pretechnical communication. Because
software is intangible, we rely on well-known diagrams with a standardized
notation. Standards and components are a great boost to any knowledge

Chapter 1 • Introduction 11

10 from Select Business Solutions of Aonix www.aonix.com.
11 Visit www.omg.org/techprocess/meetings/schedule/SPE_Management_RFP.html.

industry, from extremely old and up to dotcom. Even a basic knowledge of
how to communicate in UML can prevent considerable ambiguity and mis-
understanding in a project.

The original influences on the UML standard were rather diverse, result-
ing in a kind of smorgasbord of ingredients that the enterprise can cus-
tomize quite easily to fit its needs. At the moment, the field of software
development processes isn’t as standardized as the UML notation. Process
standardization efforts are underway within the OMG. This work will take
time, however, but the big leap toward a standard notation has already been
taken and the UML works fine with any up-to-date development process.

12 UML Xtra-Light

